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Abstract: Minimally invasive probe and optical biopsy system based on optical spectra recording and 
analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption 
spectra are generated continuously as far as the needle-like probe with one emitting and several collecting 
optical fibers penetrates through the tissues towards to the suspicious area. That allows analyzing not only 
the state of local site, but also the structure of tissues along the needle trace. The suggested method has 
the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the 
conventional diagnostic procedures provides the ground for decision-making. 
About 200 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. 
Independent diagnoses were the results of fine biopsy and histology. 
Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main 
spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated 
specificity ~ 90% and sensitivity ~91%. 
Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an 
attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 
‘cancer’ and 29 ‘non-cancer’ cases and demonstrated total separation. 
 
1 Introduction 

 
Breast cancer is known to be the most widespread female oncology disease and reason of female 
mortality in the world. But being discovered at early stage it may be successfully treated by combination 
of surgery, chemotherapy and radiation. All diagnostic method currently used in clinical practice have 
some imperfections and are unable to provide the indexes of sensitivity and specificity high enough for 
reliable diagnosing. That is why novel techniques for breast cancer diagnostics at early stages are actively 
developed all over the world. 
In the international science the diagnostic ability of optical spectra of biological tissues is widely studied. 
As it was shown in [1-3] the shapes of the spectral curves have specific absorption bands, which are 
deformed when the disease progresses, and that allows tissue differentiation on types and conditions. 
Application of a contact probe for surface cancer diagnostics was demonstrated in [4, 5]. That probe has 
one emitting and one collecting light fibers measuring light scattering spectrum in the range of 350-
700 nm. 
Minimally invasive probe and the diagnostic system developed by Biotilligent (USA), Biofil (Russia) and 
Russian Federal Nuclear Centre – VNIIEF are based on optical radiation spectra recording and analysis 
and seem to be a promising tool for early diagnostics of breast cancer [6]. In this system optical scattering 
spectra are generated continuously as far as the needle-like probe containing one emitting and several 
collecting optical fibers penetrates through the tissues moving to the suspicious area. That allows 
analyzing not only the state of local site, but also the structure of tissues along the needle trace. The 
suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and 
in parallel with the traditional diagnostic procedures provides the ground for decision-making. 
 
2 Technical details  

 
The system consists of a source of white light (Xe lamp), a measurement circuit and a unique probe with 
disposable needles incorporating optical fibers, and a computer for operation control and data recording. 
The flow diagram of the diagnostic system is presented in fig.1. 

                                                 
1 Russian Federal Nuclear Center-VNIIEF, 37 Prospekt Mira, Sarov, Nizhny Novgorod reg., 607200, Russia, e-mail 
tlyubyn@gmail.com 
2 Nuclear Safety Institute of Russian Academy of Science, 52 Bolshaya Tulskaya, Moscow, 115191, Russia 
3 BioTelligent Inc., 6248 Preston Ave.,  Livermore, CA 94551, USA 
4 LLNL, 7000 East Ave., Livermore, CA 94551, USA 



The xenon lamp has continuous spectrum in the range of 370-750 nm. Configuration of the probe and 
diagnostic system allows obtaining of quantitative characteristics of optical scattering and absorption in 
various kinds of biological tissues. A photo of the diagnostic system is given in fig. 2. 
 

 
Fig. 1 Flow diagram of the diagnostic system: 1 – xenon lamp; 2 – matching unit; D1, D2 – optical-fiber splitters; 3 - attenuator; 
S – white light source channel; R – reference channel for source spectrum measurement and calibration; C1, C2, C3 – scattered 

radiation measuring channels 
 
Fig.3. represents a photo of the optical probe and schematic of fibre location on the needle tip. The needle 
diameter is 0.8 mm and the length is 50 mm, fiber diameter is 100 m.  One of the fibers inside the needle 
emits white light, which interacts with biological tissue and then is collected by three other fibers located 
on the different distances (several hundred microns) from the source. The shape of spectral curves 
depends on the geometry. Ideally, fibers 2 and 6 being on the same distance from the emitting fibre 
should give the same results assuming the tissue structure does not change over the probe cross-section. 
Additional data from the fibre 5 in principle allows reconstruction of local elastic scattering coefficients. 
To control the depth of needle penetration and define the mechanical parameters of biological tissues the 
optical probe was provided with position and force sensors. 
The measurement system consists of three S2000 fiber optic spectrometers (Ocean Optics Inc., USA) 
with the range from 200 to 1100 nm and resolution ~1.76 nm.  
Each PC record contains the data of a microscopic volume of tissue. Macroscopic information about 
tissue optical properties is obtained by continuous data acquisition during the whole period of probe 
movement. Recording frequency 100-120 Hz enables spectral measurements each 100 m along the 
trajectory of needle movement at the recommended rate 1 cm/sec. 
To eliminate the spectral distortions accumulated along the optical path inside the system and on the 
optical contact between the needle and the handle special calibration techniques were developed. As the 
needles are disposable calibration is required after each optical biopsy procedure to unify the data 
acquired with different needles. The spectral response of the needle cleaned from remains of tissue is 
obtained in the turbid media with the calibrated optical properties. As calibrated media we use 1 or 10% 
water solution of polystyrene balls calibrated in size (1 m in diameter). The spectrum of scattering 
coefficients is calculated using Mie theory. 
Optical probing is to be performed after the tumor is discovered by palpation or mammography. The 
procedure of optical biopsy is similar to that of fine-needle aspiration biopsy (FNA) and may be used 
every time when fine biopsy is recommended, but can be cheaper and produce the instant result. In 
addition to breast cancer investigation, which is being conducted and reported here minimally invasive 
optical probing may be applied to other organs: prostate, thyroid gland and other parenchyma organs. 
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Fig. 2. Photo of the diagnostic system 

 

  
Fig. 3. Photo of the optical probe (left) and schematic of fiber location on the needle tip (right).  

1 – white light emitting; * - scattered light collecting 
 
3 Data acquisition and preliminary processing 

 
To perform clinical studies a test protocol was developed and approved by the Ethical Committee of 
Nizhny Novgorod State Medical Academy of Ministry of Health of Russian Federation on scientific study 
with human participation as a subject of investigation. In Nizhny Novgorod Regional Oncology Centre a 
procedure room was equipped and about 200 tests were completed. Each procedure was supported by 
video filming and audio recording of the comments of the physician, who carried out the procedure. 
Independent diagnoses were the results of fine biopsy and sometimes of histology – when excision was 
required. 
Scattered radiation from each collecting fiber is registered over a fixed set of optical wavelengths. After 
non-informative segments are removed (which are not in the Xe lamp spectral range) the total number of 
spectral points is 184. An example of starting data is presented in Fig.4. Number of spectra records for an 
individual patient varies and may be as large as tens of thousands. 

* 

* 

* 



The main problem at optical scattering and absorption data interpretation is high level of noise. The 
reasons are, first, the changes in the properties of the optical contact between the needle and the handle 
caused by accidental tensions that take place while the needle moves through the breast tissue. That gives 
random drops in the scattered light intensity. 

 
 

Fig.4. An example of raw data: current optical scattering spectrum  
 
Although performed cross-entropy analysis demonstrated that the signal intensity is quite informative 
value, in the present study we use normalized spectra, which further simplifies data interpretation. Due to 
small accumulation time (ca 7 ms) recorded spectra exhibit noticeable detector noise. This noise may be 
mitigated by averaging the spectral data over the uniform tissue areas. Averaging must be done carefully, 
because tissue structure may change on the small scale. This is especially true for malignant tumors, 
which may have inclusions of normal tissue. Examination of normalized and time-averaged spectral 
curves made it possible to reveal the major spectral distinctions of malignant and benign tumors. 
Not all the records are reliable and may be used for the diagnostic purposes. Visual examination 
discovered that the spectra of skin were close to those of the malignant tissues. So we did not include into 
consideration the data obtained on the depth less that 3 mm. The data acquired on the back movement 
were excluded too, because the channel was filled with blood, which distorted real tissue spectra. The 
position sensor data were used for primary filtration. Fig.5 represents temporal dependence of the needle 
depth penetration in one of the clinical experiments. X-axis is the number of time points from the 
beginning of the procedure. Two humps correspond to two insertions done in the different directions. 
Blue curve represents the initial dataflow. One can see that in the part of time the needle was in the air, 
moved back or stood still. ‘Reliable’ points used for diagnosing are marked with red.  
Unfortunately, some cases were totally rejected because of either technical or performing reasons. About 
150 tests were considered trustworthy enough and made the base for spectral types definition. Only the 
most reliable of them 29 ‘cancer’ and 29 ‘non-cancer’ cases were selected for neural network 
development as a prototype of future on-line recognition technique. 

 
 
 

sp
e
c
tr

a
l 

in
te

n
si

ty
, 
r
el

. 
u

n
it

s 

wavelength, nm 

p
o

si
ti

o
n

, 
cm

 

time blocks 



Fig.5. Position sensor readings in one of the clinical trials (blue curve). Red points indicate forward motion of the 
probe.  

4 Main spectral types of malignant and benign tumors 

 
Alternatively to time averaging mentioned above, to analyze spectra and reveal ‘malignant’ and ‘benign’ 
spectral families the method of wavelet expansion and clasterization in the space of wavelet coefficients 
was used.  
Wavelet expansion is widely used for signal processing and filtering, because it enables to get rid off 
noise and various artifacts in the data such as random surges, gaps, nonlinear distortions, etc. All that may 
hide essential features in data or pretend to be them and may deteriorate the analysis results dramatically. 
Wavelet expansion gives representation of the signal on different scales: approximation of the initial 
signal of required degree of smoothness (low-frequency component) and set of details, which are the 
difference between smoothed and initial signals. 
Haar wavelet was applied in the present study as the most saving for calculation resources. The allowable 
wavelet scales are specified by the spectral region and spectral step. For this particular case, 8 levels of 
expansion can be achieved at the most. Initial clustering was done in 13-dimensional space of the wavelet 
coefficients at 4th level of expansion. 
For malignant tumors, three families of spectral curves were effectively separated. The most 
representative family contains about 73% of all spectral samples of regions suspected of cancer. The 
average spectral curves for all of the three identified families (with allowance for standard deviation) are 
shown in fig. 6. Spectral intensity in figures 6-9 is given in relative units providing unity average. 
 

 
 

 
 

Fig. 6. Three spectral families identified for malignant 
tumors: curves corresponding to the cluster centres and 

associated dispersion. 

 
 

Fig. 7. Two spectral subfamilies composing the most 
representative family (73%) of malignant tumors: curves 

corresponding to the cluster centres and associated 
dispersion 

 
Lower level of expansion enables to see more details. In the 26-dimension space of wavelet coefficients at 
third level of expansion the most representative family positively separated into two subfamilies. Figure 7 
shows average spectral curves for these families with the respective variance.  
The similar procedure was also performed to the set of scattering spectra in healthy tissues and benign 
tumors. As a result the main spectral types were obtained, which are shown in figure 8.  
One can see that there are two groups of very close spectral shape: M66 and B20. This caused main 
difficulties in case separation.  In the 1st channel data these groups almost completely overlap within the 
measuring error. This overlap is smaller in the 3rd cannel data, and the best result that may be obtain from 
these measurements is the ratio of channel 1 to channel 3 data, which is  shown in fig.9 together with 
experimental errors. Red color corresponds to the malignant cases and green to the benign ones. Although 
overlap is still quite large, one can see that general slope differs significantly. To reveal some essential 
details forming the difference between ‘cancer’ and ‘non-cancer’ signals the probability density 
distributions of their wavelet coefficients on different scales were calculated and only the most divergent 
were considered.  Automatic recognition algorithm was developed basing on two of them. Overlapping of 
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probability density distributions for ‘cancer’ and ‘non-cancer’ data are still essential and that put a 
restriction on the method efficiency. 
 

 

 

 
 
 
Fig. 8. The set of spectral templates used in automatic 
detection method. ‘M’ corresponds to malignant spectra, 
‘B’ – to benign ones. The percentage shows the number of 
investigated spectra relating to the given type. 

 
 
Fig. 9. Spectral dependence of the ratio of channel 1 
to channel 3 data together with experimental errors. 
Red color corresponds to the malignant cases and 
green to the benign ones. 

 
The automatic diagnostic algorithm was developed basing on revealed spectral templates and statistical 
analysis of wavelet coefficients of the spectra. The automatic diagnoses were compared with those given 
by physicians. The method demonstrated rather high efficiency parameters: the indexes of sensitivity and 
specificity were found equal to 90% and 91% correspondingly. We believe that more statistics might 
improve these parameters. 

 
5 Neural network analysis 

 
Large amount of information acquired in each procedure, fuzziness in criteria of ‘cancer’ family 
membership and data noisiness make neural networks to be an attractive analytic tool for optical biopsy 
data. To define the dividing rule between ‘cancer’ and ‘non-cancer’ spectral families a three-layer 
perceptron was applied. 
The principles of learning theory [7] require composing a learning sample, which is a set of spectrum 
examples presenting different tissue types. The learning sample was formed by the experts and only the 
most reliable data were included. Each spectral envelop was associated with one of the meanings of the 
binary value y : 1y  for ‘cancer’ spectra and 1y   for ‘non-cancer’ ones. 
To smooth the detector noise it makes sense to average the spectral data over some time window. Besides, 
spectral envelopes were normalized on average brightness. Random drops in the scattered intensity 
caused by contact loss in the optical fiber connection points do not permit using in full the current 
intensity values as a component of analysis. Nevertheless, cross-entropy study demonstrated that average 
brightness is quite an informative value, so it was included in the set of input parameters. So input data 
for the perceptron were composed of a set of wavelet expansion coefficients of the spectral curves plus 
one more parameter – the average brightness of the spectrum. 
To build a model for data division the method of learning sample approximation was proposed. 
Approximation is the problem of reconstruction of the rules of data generation on the ground of finite 
amount of known data – the inverse problem. As the majority of inverse problems it is ill-posed, i.e. has a 
set of solutions. Such uncertainty may be eliminated by regularization – restriction of the set of possible 
solutions. In our study Bayesian regularization method was used [8]. 
The tissues with high blood content cause some problems for analysis. They may be the result of vessel 
damage by the needle-like probe. But also there can be a dense vessel net surrounding the malignant 
tumor. To separate these two cases, the decision was made to compose an additional learning sample 

sp
e
c
tr

a
l 

in
te

n
si

ty
, 
r
el

. 
u

n
it

s 

sp
e
c
tr

a
l 

in
te

n
si

ty
, 
r
el

. 
u

n
it

s 

wavelength, nm wavelength, nm 



containing ‘cancer’ and ‘non-cancer’ spectra of bloody tissue and teach another perceptron to classify 
them. The spectra recognized by the first perceptron as ‘cancer’ ones were given on the input of the 
second perceptron, which gave the final diagnosis. Of course, there was another possible way: to join the 
learning samples and apply only one but more ‘powerful’ perceptron. But from the mathematical point of 
view, two sequential models are better than one ‘big’ model, because simultaneous optimization over the 
large number of parameters has higher probability of getting the model into a local minimum. 
To improve the prediction ability independent processing of two geometrically equivalent channels and 
their voting was included into the model. The voting rule was: if both channels showed ‘cancer’, the 
decision was: ‘cancer’, otherwise: ‘non-cancer’. 
Fig.10 demonstrates temporal dependence of (top-down) position sensor readings, 1st perceptron output, 
2nd perceptron output for the first and the second channels and final decision for the ‘cancer’ case. The 
same set of graphs is given in the Fig.10 for the ‘non-cancer’ case. One can see that fig.10 gives a positive 
diagnosis and fig.11 gives the negative one, which corresponds to the fine biopsy results. 
The model was tested over the sample containing 29 ‘cancer’ and 29 ‘non-cancer’ cases. Final separation 
was 100%. Nevertheless cancerous tumors are diverse and our limited sampling is far from being all-
inclusive. It is rational to assume that if the testing sample increases the sensitivity and specificity will 
deteriorate. However the developed model has strong potential to generalize a great variety of data and 
the accuracy of the suggested method may eventually become comparable with that of the most advance 
methods of breast cancer diagnostics.  
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Fig.10. Temporal dependence of position sensor 
readings (a), 1st perceptron output (b), 2nd perceptron 
output for the first (c) and the second (d) channels and 
final decision (e) for the ‘cancer’ case;  

Fig.11. Temporal dependence of position sensor 
readings (a), 1st perceptron output (b), 2nd perceptron 
output for the first (c) and the second (d) channels 
and final decision (e) for the ‘non-cancer’ case. 

 
6 Discussion 

 
In recent years optical biopsy methods proved their efficacy for cancer diagnostics, prognostics and 
treatment management. These methods have advantages of minimal invasiveness, on-line results, low 
cost, ease of implementation and also they do not require taking out any tissue samples and involving 
high-skilled pathologists for data interpretation. Fluorescence, Raman and elastic scattering signals are 
commonly used in oncology studies. The underlying physical principles are described in details in review 
[9]. In breast cancer studies besides diagnostics [4] optical spectroscopy serves for tumor margin 
assessment during surgery [10] and lymph node assessment [11]. Basing on optical spectrometry 
measurements oxygen saturation parameters of the tumor tissue may be reconstructed, which is very 
valuable from the prognostic point of view [12]. 



The optical biopsy system under development is minimally invasive and additionally to listed above has a 
benefit of instant analysis of all tissues surrounding the needle tip along the trace. It was clinically tested 
in Nizhny Novgorod Regional Oncology Center, Russia. About 200 patients with breast tumors were 
investigated.  
In all cases the optical biopsy procedure was followed by standard fine biopsy procedure and cytological 
analysis. In some cases tumor tissues were subjected to surgery and histology investigation.  
Automatic data processing and analysis algorithm was developed to evaluate acquired spectral data that 
may extent to tens of thousands spectra per patient. 
Expansion of the spectra over Haar wavelets followed by clasterization enabled to reveal several main 
spectral ‘families’ for malignant and benign tumors. Automatic classification algorithm was developed. 
The results were compared to the results of medical diagnoses performed by the physicians on the basis of 
cytology and histology investigation.  
The indexes of sensitivity and specificity were found equal to 90% and 91% correspondingly. Earlier we 
reported these parameters to be 96% and 80% [6]. That algorithm differed significantly from the current 
approach and by adjusting parameters the sensitivity and specificity can be adjusted. Given the large data 
set and comparatively small patient sample significant algorithm development and improvement is 
possible.  
The method of artificial neural networks was also applied for data analysis. A three-layer perceptron was 
used to separate ‘cancer’ and ‘non-cancer’ spectral families. Another perceptron was learnt exceptionally 
on the spectra with high blood content. The two collecting channels were independently processed and 
their voting was included into the model. The tests were carried out on the sample of 29 ‘cancer’ and 29 
‘non-cancer’ cases and demonstrated total separation. Although we expect that the sensitivity and 
specificity may deteriorate with testing sample increase (because of imperfectly performed cases), we 
believe that the developed model has strong potential to generalize a great variety of data and its accuracy 
may eventually become comparable with that of the most advance methods of breast cancer diagnostics. 
Some technical improvements have been already done basing on the experience obtained in the clinical 
experiments. The handle of new design was developed with only 4 fibers to minimize the needle 
diameter. The fibres are connected directly to the front panel for better optical contact. Shock absorber 
was added to smooth needle movement. New calibration method and special quartz calibration cell were 
developed to improve reliability of the obtained data. 
We believe that the optical biopsy system for the internal tissue test has a great potential for development. 
First, the procedure of optical probing is similar to fine-needle aspiration biopsy (FNA) and may be used 
every time when fine biopsy is recommended, but can be cheaper and produce the instant result. In 
addition to breast cancer investigation that is being conducted optical probing may be applied to other 
organs: prostate, thyroid gland and other parenchyma organs. Secondly, the physicians collaborated with 
the project would like to combine in the same device optical biopsy and fine aspiration biopsy, which 
currently is standard and obligatory procedure at breast oncology investigation in Russia. This is 
technically feasible and would give the whole body of information in one procedure. For this initial study 
FNA results and in some cases biopsy serve as the ‘gold standard’, which provides some degree of 
uncertainty since FNA alone can have false-negative rate exceed 10% [13]. Thirdly, basing on the optical 
biopsy diagnostic system minimally invasive phototherapy system can be developed usable with and 
without photosensitizer by replacing Xe lamp with appropriate light source. 
 
7 Conclusion 

 
The optical biopsy system underwent first clinical tests. Automatic data processing and analysis algorithm 
was developed and the indexes of sensitivity and specificity were estimated basing on medical diagnoses: 
90% and 91% correspondingly. The method of artificial neural networks was also applied for data 
analysis as a prototype of further on-line diagnostic algorithm and total separation on the limited dataset 
was demonstrated.   
The study is in the very beginning, but the developed method already seems to be very promising. 
Comparing with the traditional breast cancer diagnostics it has the advantages of automated on-line 
diagnosing and minimal tissue destruction.  In parallel with the conventional diagnostic procedures 
optical probing provides the ground for decision-making. 
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